

Cr:ZnSe

DESCRIPTION

Cr: ZnSe-Laserkristalle haben die Vorteile einer normalerweise fehlenden Absorption im angeregten Zustand und einer Umwandlung im oberen Bereich, einer extrem breiten Absorptionsbande und eines großen Emissionsquerschnitts, einer hervorragenden Fluoreszenzquanteneffizienz bei Raumtemperatur und einer extra breiten Emissionsbreite sowie einer guten chemischen und mechanischen Eigenschaften, die es zu einer hervorragenden Quelle für effiziente und leistungsstarke abstimmbare Mittelinfrarotlaser machen. Da das Wellenlängenband im mittleren Infrarot das Fenster der Atmosphäre ist, hat der Cr: ZnSe-Laserkristall wichtige Anwendungsperspektiven im Bereich der Fotokommunikation, der Detektion von Schadgasen, der Prüfung industrieller Verbrennungsprodukte usw.

PARAMETER

MATERIAL UND SPEZIFIKATIONEN

Kristallstruktur	kubisch	
Poisson-Verhältnis	0.28	
Dicke / Durchmesser Toleranz ±0.05mm		
Orientierungstoleranz	< 0.5°	
Oberflächenglätte	<λ/8@632nm	
Wellenfrontverzerrung	<λ/4@632nm	
Oberflächenqualität	10 ⁻⁵ (MIL-O-13830A)	
Parallel	30"	
Aufrecht	15′	
Klar Blende	>90%	
Fase	<0.2×45°	
Schmelzpunkt	1520 °C	

PHYSIKALISCHE UND CHEMISCHE EIGENSCHAFTEN

Wärmeausdehnungskoeffizient @ 20°C	1.5×10 ⁻⁶ /°C
Wärmeleitfähigkeitskoeffizient @ 20°C	14 W/m/°K
Spezifische Wärme	0.79 J/g K
Dichte	5.27 g/cm³
Haltbarkeit Knoop Härte	112 kgf/mm²
Mohs Härte	8.5
Elastizitätsmodul	67 GPa
Bruchmodul	55 MPa
Orientierung	<111>oder <100>

OPTISCHE UND SPEKTRALE EIGENSCHAFTEN

Laserwellenlänge	2150 – 2600 nm	
Emissionslinienbreite	<1 nm	
Emissionsquerschnitt (@ 1064nm)	9×10 ⁻¹⁹ cm ²	
Eigenverlust @ 1064 nm	<0.003 cm ⁻¹	
Brechungsindex (n) @ 1650 nm	2.455	
Thermischer optischer Koeffizient (dn / dT) @nm 61×10 ⁻⁶ /°C		

FEATURES

- Breite Abstimmbarkeit (Lasern von 2,1-3,1 μm)
- Breite Absorptionsbanden
- Großer Verstärkungsquerschnitt (σ emission~ 9×10 -19 cm2) Zahnheilkunde
- Minimales Problem der Absorption des angeregten Zustands (keine drehzulässigen Übergänge des angeregten Zustands vonoberen Laserniveau)
- Hohe Wärmeleitfähigkeit besser als YAG (18 W / m · K in ZnSe gegenüber 13 W / m · K in YAG)
- Hohe IR-Transparenz (0,6-20 μm)

ANWENDUNG

- Chirurgie
- Fernerkundung
- Freiraumkommunikation
- Militärische Anwendungen